Epigenetic inactivation of oncogenic brachyury (TBXT) by H3K27 histone demethylase controls chordoma cell survival.

The expression of the transcription factor brachyury (TBXT) is normally restricted to embryonic development and its silencing after mesoderm development is epigenetically regulated. In chordoma, a rare tumour of notochordal differentiation, TBXT acts as a putative oncogene, and we hypothesised that its expression could be controlled through epigenetic inhibition. Screening of five chordoma cell lines revealed that only inhibitors of the histone 3 lysine 27 demethylases KDM6A (UTX) and KDM6B (Jmjd3) reduce TBXT expression and lead to cell death, findings validated in primary patient-derived culture systems. Pharmacological inhibition of KDM6 demethylases leads to genome-wide increases in repressive H3K27me3 marks, accompanied by significantly reduced TBXT expression, an effect that is phenocopied by the dual genetic inactivation of KDM6A/B using CRISPR/Cas9. Transcriptional profiles in response to a novel KDM6A/B inhibitor, KDOBA67, revealed downregulation of critical genes and transcription factor networks for chordoma survival pathways, whereas upregulated pathways were dominated by stress, cell cycle and pro-apoptotic response pathways.

This study supports previous data showing that the function of TBXT is essential for maintaining notochord cell fate and function and provides further evidence that TBXT is an oncogenic driver in chordoma. Moreover, the data suggest that TBXT can potentially be targeted therapeutically by modulating epigenetic control mechanisms such as H3K27 demethylases.